$0.35 \times 0.2 \times 0.1 \text{ mm}$

Colorless

 $\begin{aligned} R_{\rm int} &= 0.0522\\ \theta_{\rm max} &= 22.5^\circ \end{aligned}$

 $h = 0 \rightarrow 7$

 $k = 0 \rightarrow 12$

 $l = -11 \rightarrow 11$

3 standard reflections

reflections

monitored every 97

intensity decay: none

$$V = 890.97 \text{ Å}^3$$

 $Z = 2$
 $D_x = 2.093 \text{ Mg m}^{-3}$

Data collection

Siemens R3m/E diffractometer Wyckoff scans Absorption correction: ψ scans $T_{min} = 0.362, T_{max} =$ 1.000 1353 measured reflections 1169 independent reflections 996 observed reflections $[F_o^2 > 3\sigma(F_o^2)]$

Refinement

Refinement on F	$(\Delta/\sigma)_{\rm max} = -0.016$
R = 0.0331	$\Delta \rho_{\rm max} = 1.38 \ {\rm e} \ {\rm \AA}^{-3}$
wR = 0.0442	(near Pt)
S = 1.13	$\Delta \rho_{\rm min} = -2.20 \ {\rm e} \ {\rm \AA}^{-3}$
996 reflections	Atomic scattering factors
114 parameters	from International Tables
H atoms riding with $C-H =$	for X-ray Crystallography
0.96 Å	(1974, Vol. IV)
$w = 1/[\sigma^2(F_o) + 0.0012F_o^2]$	

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters (Å²)

$$U_{\text{eq}} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_i^* \mathbf{a}_i \cdot \mathbf{a}_j.$$

	x	у	Ζ	U_{eq}
Pt	0	1/2	1/2	0.019 (1)
P(1)	0.1400 (2)	0.3266(1)	0.5502 (2)	0.019 (1)
N(1)	0.3018 (10)	0.5526 (6)	0.3205 (7)	0.048 (3)
N(2)	0.3994 (8)	0.1641 (5)	0.5111 (5)	0.029 (2)
N(3)	0.3610 (8)	0.2065 (4)	0.7329 (5)	0.024 (2)
N(4)	0.1180 (8)	0.0986 (4)	0.6002 (5)	0.027 (2)
C(1)	0.190(1)	0.5351 (7)	0.3866 (8)	0.027 (2)
C(2)	0.319(1)	0.2707 (6)	0.4562 (7)	0.029 (2)
C(3)	-0.0027 (9)	0.1968 (6)	0.5573 (8)	0.027 (2)
C(4)	0.2747 (9)	0.3194 (6)	0.7094 (6)	0.025 (2)
C(5)	0.4897 (9)	0.1810 (6)	0.6409 (7)	0.031 (2)
C(6)	0.254 (1)	0.0750 (6)	0.5117 (7)	0.031 (2)
C(7)	0.218(1)	0.1170 (6)	0.7262 (7)	0.029 (2)

Table 2. Selected geometric parameters (Å, °)

Pt—P(1)	2.305 (2)	$C(1) - N(1^{i})$	1.15 (1)	
PtC(1)	1.975 (9)			
$P(1) - Pt - P(1^{i})$	180.0	P(1)— Pt — $C(1)$	90.6 (2)	
$C(1)$ — Pt — $C(1^i)$	180.0	$P(1^i) - Pt - C(1)$	89.4 (2)	
Symmetry code: (i) $-x$, $1 - y$, $1 - z$.				

The SHELXTL-Plus program package (Sheldrick, 1991) was used for crystallographic calculations.

Support from the National Science Foundation (CHE 9300107), the Robert A. Welch Foundation and the Texas Advanced Research Program is gratefully ac-knowledged.

©1995 International Union of Crystallography Printed in Great Britain – all rights reserved Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: FG1042). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Assefa, Z., McBurnett, G. B., Staples, R. J., Fackler, J. P. Jr, Assmann, B., Angermaier, K. & Schmidbaur, H. (1995). *Inorg. Chem.* 34, 75– 83.
- Assefa, Z., Staples, R. J. & Fackler, J. P. Jr (1995). Acta Cryst. Submitted.
- Darensbourg, D. J., Joo, F., Kannisto, M., Katho, A. & Reibenspies, J. H. (1992). Organometallics, 11, 1990–1993.
- Delerno, J. R., Trefonas, L. M., Darensbourg, M. Y. & Majeste, R. J. (1976). Inorg. Chem. 15, 816-819.
- Fluck, E., Förster, J. E., Weidlein, J. & Hädicke, E. (1977). Z. Naturforsch. Teil B, 32, 499-512.

Sheldrick, G. M. (1991). SHELXTL-Plus. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Stafford, J. N. W. (1994). Dissertation, Texas A & M Univ., USA.

Acta Cryst. (1995). C51, 1743-1745

Hexamolybdenum Cluster with One Telluride and Seven Chloride Capping Ligands

Masahiro Ebihara, Toshihiro Imai and Takashi Kawamura

Department of Chemistry, Faculty of Engineering, Gifu University, Yanagido, Gifu 501-11, Japan

(Received 3 August 1994; accepted 22 November 1994)

Abstract

Tetraethylammonium hepta- μ_3 -chloro- μ_3 -telluro-hexachlorohexamolybdate, (Et₄N)₃[(Mo₆Cl₇Te)Cl₆], has an octahedral hexamolybdenum cluster core whose faces are capped by seven Cl atoms and one Te atom. The capping telluride is disordered in the crystal. The average Mo—Mo distance is not much different from those in [(Mo₆Cl₇Z)Cl₆]³⁻ (Z = S, Se).

Comment

The hexamolybdenum cluster unit has been observed in solid-state Chevrel-phase compounds, $M_x Mo_6 Z_8$ (M = Cu, Pb, *etc.*; Z = S, Se, Te) (Yvon, 1978). Similar Mo_6-cluster structures have been found in discrete halide-cluster ions, $[(Mo_6 X_8) X'_6]^{2-}$ (X = X' = Cl, Br). The Chevrel-phase compounds have formal oxidation states of Mo_6^{12+} to Mo_6^{16+} , whereas the reported halide clusters are known to have only Mo_6^{12+} . The halide–chalcogenide

mixed capping-ligand clusters $Mo_6X_{8-x}Z_x^{n+}$ are closely related to both structures. The discrete mixed-ligand clusters $[(Mo_6Cl_7Z)Cl_6]^{3-}$ were first synthesized by Michel & McCarley (1982) as pyridinium salts. We have reported the structures of the Mo_6^{12+} complexes $Cs_3[(Mo_6Cl_7Z)Cl_6].H_2O$ (Z = S, Se) (Ebihara, Toriumi & Saito, 1988) and (Et₄N)₃[(Mo₆Br₇S)Cl₆] (Ebihara, Isobe, Sasaki & Saito, 1992) and the redox potentials, electronic absorption spectra, and ⁹⁵Mo NMR spectra were measured for their "Bu₄N⁺ salts. The structures of the Mo₆¹³⁺ species (${}^{n}Bu_{4}N$)₂[(Mo₆X₇Z)Cl₆] (X, Z = Cl, S; Cl, Se; Br, S) were also reported (Ebihara, Isobe, Sasaki & Saito, 1992). However, in all of these crystal structures the chalcogenide atom was disordered. Thus, we decided to synthesize the cluster with a larger capping chalcogenide, $[(Mo_6Cl_7Te)Cl_6]^{3-}$, as its Et₄N⁺ salt, (I), in the hope of obtaining crystals without disorder of the chalcogenide ligand; the results are reported here.

Unfortunately, the telluride ion is disordered in the crystal of $(Et_4N)_3[(Mo_6Cl_7Te)Cl_6]$. There are two independent capping-atom sites in the unit cell, Te1 $(x, y, \frac{1}{2})$ and Te2 (x, x, z). Te1 was refined as 0.058 Te +

Fig. 1. Structure of the hexamolybdenum cluster showing 50% probability displacement ellipsoids.

0.942 Cl and Te2 as 0.192 Te + 0.808 Cl. In isostructural (Et₄N)₃[(Mo₆Br₇S)Cl₆] (Ebihara, Isobe, Sasaki & Saito, 1992), the occupancy of Br is greater at the corresponding site to Te2 of the present complex than the other site. These results indicate that a larger atom tends to occupy the (x, x, z) site.

The average Mo—Mo distance in the title cluster [2.613 (2) Å] is similar to those in the $[(Mo_6Cl_7Z)Cl_6]^{3-}$ (Z = Cl, Se) clusters [2.604 (2)-2.612 (3) Å (Michel & McCarley, 1982; Ebihara, Toriumi & Saito, 1988)]. The $[(Mo_6Cl_7Te)Cl_6]^{3-}$ ion shows one irreversible oxidation wave in acetonitrile, whereas a reversible wave has been observed for $[(Mo_6Cl_7S)Cl_6]^{3-}$ and $[(Mo_6Cl_7Se)Cl_6]^{3-}$ (Ebihara, Toriumi & Saito, 1988). Thus, although the title cluster has an average Mo—Mo distance similar to those of the other chalcogenide substituted species, the redox behaviour of each is different.

Experimental

The cluster ion was obtained by a similar method to that used for $[(Mo_6Cl_7Se)Cl_6]^{3-}$, using Te powder instead of Se (Ebihara, Toriumi & Saito, 1988). The crystal of the Et₄N⁺ salt was grown by slow diffusion of Et₄NCl in aqueous 6 *M* HCl solution into an aqueous 6 *M* HCl solution of the cluster.

Crystal data

$(C_8H_{20}N)_3[Mo_6Cl_{13}Te]$	Mo $K\alpha$ radiation
$M_r = 1554.89$	$\lambda = 0.7107 \text{ Å}$
Tetragonal	Cell parameters from 25
$P4_2/mnm$	reflections
a = 11.995(1) Å	$\theta = 12.1 - 15.0^{\circ}$
c = 16.692(2) Å	$\mu = 2.857 \text{ mm}^{-1}$
V = 2401.7 (3) Å ³	T = 296 K
Z = 2	Prismatic
$D_x = 2.150 \text{ Mg m}^{-3}$	$0.15 \times 0.05 \times 0.05$ mm
	Orange brown

 $R_{\rm int} = 0.046$ $\theta_{\rm max} = 27.5^{\circ}$

 $h = 0 \rightarrow 15$

 $k = 0 \rightarrow 15$

 $l = 0 \rightarrow 21$

3 standard reflections

reflections

monitored every 150

intensity decay: 0.29%

Data collection AFC-7R diffractometer $\omega/2\theta$ scans Absorption correction: ψ scan $T_{min} = 0.844, T_{max} =$ 0.998 3124 measured reflections 1663 independent reflections 988 observed reflections $[I > 2\sigma(I)]$

Refinement

Refinement on F (R = 0.038 (wR = 0.043 (S = 1.52) 988 reflections (76 parameters (H-atom parameters not refined ($w = 1/[\sigma^2(F) + (0.017F)^2/4]$

 $(\Delta/\sigma)_{max} = 0.01$ $\Delta\rho_{max} = 0.63 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.52 \text{ e } \text{Å}^{-3}$ Extinction correction: none Atomic scattering factors from International Tables for X-ray Crystallography (1974, Vol. IV)

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters (Å²)

$U_{\text{eq}} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_i^* \mathbf{a}_i \cdot \mathbf{a}_j.$

	0	ссирапсу	x	у	z	Uea
Mol	8(j)	1.0	0.57709 (5)	1-x	0.57842 (5)	0.0333 (3)
Mo2	4(g)	1.0	0.60861 (7)	x	1/2	0.0326 (4)
Tel	8(i)	0.058	0.7547 (2)	0.4573 (2)	1/2	0.050(1)
Cll	8(i)	0.942	x (Tel)	y (Te1)	1/2	0.050
Te2	8(j)	0.192	0.3909 (1)	x	0.6561 (1)	0.0579 (8)
Cl2	8(j)	0.808	x (Te2)	x (Te2)	z (Te2)	0.0579
C13	8(j)	1.0	0.6831 (2)	1-x	0.6798 (2)	0.067 (1)
Cl4	4(g)	1.0	0.7530 (2)	x	1/2	0.067 (4)
N1	2(<i>b</i>)	1.0	1/2	1/2	0	0.056 (8)
N2	4(ď)	1.0	1/2	0	1/4	0.053 (5)
C1	8(j)	0.5†	0.556 (2)	1-x	-0.080 (2)	0.11 (1)
C2	4(e)	1.0	1/2	1/2	-0.156 (1)	0.19(1)
C3	8(i)	0.5†	0.376 (2)	0.480 (2)	0	0.08 (1)
C4	4(f)	1.0	0.348 (1)	x	0	0.14 (1)
C5	16(k)	1.0	0.5836 (7)	0.0667 (8)	0.1981 (5)	0.074 (6)
C6	16(k)	1.0	0.5269 (9)	0.1431 (9)	0.1372 (6)	0.113 (9)

† Occupancy fixed by symmetry.

Table 2. Selected geometric parameters (Å, °)

Mo1-Mo1 ⁱ	2.618 (2)	Mo2—Te1	2.523 (2)
Mo1—Mo1 ⁱⁱ	2.616 (2)	Mo2-Te1 ⁱⁱⁱ	2.523 (2)
Mol-Mo2	2.611 (1)	Mo2—Te2 ⁱⁱ	2.606 (2)
Mo1—Te1	2.534 (2)	Mo2—Te2 ^{iv}	2.606 (2)
Mo1-Te2	2.611 (2)	Mo2	2.449 (4)
Mo1-Cl3	2.470 (3)		.,
Mol ⁱ -Mol-Mol ⁱⁱ	90.00	Mo1-Mo2-Te1 ⁱⁱⁱ	119.23 (6)
Mol ⁱ MolMo2	59.91 (2)	Mo1—Mo2—Te2 ⁱⁱ	60.06 (4)
Mol ⁱ -Mol-Tel	58.90 (3)	Mo1—Mo2—Te2 ^{iv}	120.23 (5)
Mol ⁱ —Mol—Te2	119.78 (4)	Mo1-Mo2-Cl4	134.88 (2
Mol ¹ -Mol-Cl3	133.26 (8)	Mol ⁱ —Mo2—Mol ⁱⁱ	90.24 (4)
Mol ⁱⁱ —Mol—Mo2	59.94 (2)	Mol ⁱ Mo2Mol ^{iv}	60.11 (4)
Mol ⁱⁱ —Mol—Tel	118.64 (5)	Mol ⁱ Mo2Tel	59.13 (5)
Mol ⁱⁱ —Mol—Te2	59.93 (3)	Mol ⁱ —Mo2—Tel ⁱⁱⁱ	119.23 (6)
Mol ⁱⁱ —Mol—Cl3	136.73 (8)	Mo1 ⁱ Mo2Te2 ⁱⁱ	120.23 (5)
Mo2-Mo1-Mo2 ⁱⁱ	89.76 (4)	Mol ⁱ —Mo2—Te2 ^{iv}	60.06 (4)
Mo2-Mo1-Te1	58.69 (5)	Mo1 ⁱ —Mo2—Cl4	134.88 (2)
Mo2-Mo1-Te1*	118.80 (4)	Mol ⁱⁱ —Mo2—Mol ^{iv}	60.17 (4)
Mo2-Mo1-Te2	119.89 (4)	Te1—Mo2—Te1 ⁱⁱⁱ	178.0(1)
Mo2-Mo1-Te2 ⁱⁱ	59.87 (4)	Te1—Mo2—Te2 ⁱⁱ	90.00 (2)
Mo2-Mo1-Cl3	135.09 (2)	Te1—Mo2—Te2 ^{iv}	90.00 (2)
Tel—Mol—Tel ^v	90.40 (9)	Te1-Mo2-Cl4	91.01 (6)
Te1—Mo1—Te2	178.32 (6)	Te1 ⁱⁱⁱ —Mo2—Te2 ⁱⁱ	90.00 (2)
Te1—Mo1—Te2 ⁱⁱ	89.64 (6)	Te1 ⁱⁱⁱ —Mo2—Te2 ^{iv}	90.00 (2)
Te1-Mo1-Cl3	90.29 (7)	Te1 ⁱⁱⁱ —Mo2—Cl4	91.01 (6)
Tel ^v —Mol—Te2	89.64 (6)	Te2 ⁱⁱ —Mo2—Te2 ^{iv}	179.7 (1)
Tel ^v —Mol—Te2 ⁱⁱ	178.32 (6)	Te2 ⁱⁱ —Mo2—Cl4	89.83 (5)
Tel ^v MolCl3	90.29 (7)	Te2 ^{iv} —Mo2—Cl4	89.83 (5)
Te2—Mo1—Te2 ⁱⁱ	90.27 (8)	Mo1—Te1—Mo1 ⁱ	62.20 (6)
Te2Mo1Cl3	91.39 (7)	Mo1—Te1—Mo2	62.18 (6)
Mo1-Mo2-Mo1	60.17 (4)	Mol ⁱ —Te1—Mo2	62.18 (6)
Mo1-Mo2-Mo1 ⁱⁱ	60.11 (4)	Mo1—Te2—Mo1 ⁱⁱ	60.12 (5)
Mo1-Mo2-Mo1 ^{iv}	90.24 (4)	Mo1-Te2-Mo2 ⁱⁱ	60.08 (5)
Mo1—Mo2—Te1	59.13 (5)	Mo1 ⁱⁱ —Te2—Mo2 ⁱⁱ	60.08 (5)
Symmetry codes:	(i) $x, y, 1 - z;$	(ii) $1 - x, 1 - y, z;$	(iii) y, x, z

Symmetry codes: (1) x, y, 1 - z; (11) 1 - x, 1 - y, z; (11) y, x,(iv) 1 - x, 1 - y, 1 - z; (v) 1 - y, 1 - x, z.

The structure was solved on the basis of the structure of isostructural $(Et_4N)_3[(Mo_6Br_7S)Cl_6]$ (Ebihara, Isobe, Sasaki & Saito, 1992). Each independent capping site was refined as Te + Cl and the sum of the occupancies of Te was restricted to 0.25. Since one Et_4N^+ ion was disordered at the *mmm* site, the occupancies of Cl and C3 were set equal to 0.5.

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1988). Cell refinement: MSC/AFC Diffractometer Control Software. Data reduction: TEXSAN PROCESS (Molecular Structure Corporation, 1993). Program(s) used to refine structure: TEXSAN LS. Software used to prepare material for publication: TEXSAN TABLES.

This work was supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science and Culture of Japan.

Lists of structure factors, anisotropic displacement parameters and complete geometry have been deposited with the IUCr (Reference: NA1128). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Ebihara, M., Isobe, K., Sasaki, Y. & Saito, K. (1992). Inorg. Chem. 31, 1644–1649.
- Ebihara, M., Toriumi, K. & Saito, K. (1988). Inorg. Chem. 27, 13-18.
- Michel, J. B. & McCarley, R. E. (1982). Inorg. Chem. 21, 1864–1872. Molecular Structure Corporation (1988). MSC/AFC Diffractometer Control Software. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
- Molecular Structure Corporation (1993). TEXSAN. Single Crystal Structure Analysis Software. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
- Yvon, K. (1978). Current Topics in Material Science, 1st edition, Vol. 3, edited by E. Kaldis, pp. 53-129. New York: North Holland.

Acta Cryst. (1995). C51, 1745-1748

[Bis(3-aminopropyl)amine-*N*,*N'*,*N''*]-[glycylglycinato(2–)-*N*,*N'*,*O*]chromium(III) Perchlorate Monohydrate, [Cr(C₄H₆N₂O₃)(C₆H₁₇N₃)]ClO₄.H₂O

JONG-HA CHOI*

Department of Chemistry, Andong National University, Andong 760-749, Korea

IL-HWAN SUH AND SANG-HEE KWAK

Department of Physics, Chungnam National University, Daejeon 305-764, Korea

(Received 15 August 1994; accepted 24 February 1995)

Abstract

The mixed-ligand complex $[Cr(dpt)(Gly-Gly)]ClO_4.H_2O$ [where dpt = bis(3-aminopropyl)amine and H₂Gly-Gly = glycylglycine] adopts a structure in which the ligands are tridentate and coordinate meridionally. The four amine N atoms, the carboxyl O atom and the peptide N atom